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Abstract  

In operation and planning of electrical grids, it is essential to account for temporal fluctuation of produced and consumed 

electric energy. Time series based studies often use standardized load profiles for this, which, however, cannot accurately 

represent the individual peak patterns in load and demand and their random combinations. As part of the SimBench 

project, we developed a dataset of energy time series to be assigned as individual profiles to grid nodes in high voltage 

(HV), medium voltage (MV) and low voltage (LV) grids to calculate local power flows in a more realistic way. Load 

profiles are classified and assigned to categories on the basis of similarity to standard load profiles to represent a broad 

range of energy users and generation profiles were created using weather data and an agent-based simulation tool. The 

subset presented in this paper comprises different 77 one-year-profiles with a 15 minute resolution, containing commercial 

consumers, household consumers, storage, and production units based on real measurements from Germany with a focus 

on MV and LV levels. 

 

1 Introduction 

1.1 Motivation 

Energy grids around the world currently face a fundamen-

tal transformation: Structures change from centralistic de-

sign and monodirectional power flows to a complex net-

work of distributed prosumers with volatile and locally co-

inciding peaks in demand and generation. The planning 

and operation of stable and cost-efficient future power 

grids requires to accurately predict the proximity to opera-

tional boundaries of such systems also when actual meas-

urement data is not available. Traditionally, grid computa-

tions are usually derived from a worst-case scenario based 

on predicted maximum coincident values of load and gen-

eration, which can lead to over-dimensioning of infrastruc-

ture. Time series based approaches can offer a higher de-

gree of realism, but only when based on representative in-

puts. 

 

The SimBench project aims to provide a comprehensive set 

of power grid models and time series to serve as a basis for 

grid calculations, especially where measured data is not 

available. Those calculations need profiles that exhibit the 

random and short-scale fluctuations of real measurements, 

but are representative for the units typically present in the 

respective power grid. 

 

Further requirements are: 

 

 individuality, i.e. a large bandwidth of different 

real types 

 inclusion of both active and reactive power 

 temporal extend of one full year, without repeti-

tion of generic weekdays 

 temporal resolution of 15 minutes 

 suitability for both LV and MV grid levels 

 

While solar and wind power generation can be modelled 

relatively well based on weather data, demand profiles ex-

hibit an inherent inhomogeneity based on several external 

factors. Especially commercial consumers vary strongly in 

opening hours or technology used, while a high variance in 

peak timing induced by variations in the occupants behav-

iour dominates household loads [1]. 

In time series based grid calculations, these external factors 

are hard to predict and therefore especially relevant. Thus, 

we chose to compose a dataset based on real measurements 

instead of synthetically modelled profiles.  

1.2 Standard load profiles 

Power utilities commonly use generic load profiles to 

group commercial customers with similar load shapes into 

categories. In Germany, standard load profiles (SLPs) are 

used for trading energy of consumers with annual con-

sumption below 100 MWh [2]. Here, the most commonly 

used profile set is developed by the German Association of 

Energy and Water Industries (BDEW, formerly VDEW) 

[3]. It comprises eleven aggregated profiles, one for resi-

dential consumers (H0), three for agricultural (L0-L3), and 

seven for commercial consumers with different opening 

hours (G0-G6).  They are differentiated into workdays, Sat-

urdays and Sundays as well as three seasonal categories 

winter, summer, and transitional. The set includes two pro-

files for street lightning (B0) and band load (G7). 
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Lately, with more available customer data and the roll-out 

of smart meters, the forecast accuracy of these profiles has 

been challenged [4], and in the future direct measurements 

will most likely gain more impact. However, the long prac-

tical experience in categorizing customer loads to SLPs and 

the readily available data for SLP types usually present in 

various grid types makes them a valuable basis for the de-

velopment of synthetic grids where loads have to be ex-

trapolated from incomplete data. 

We choose to follow the classification into load categories 

provided by BDEW profiles, and selected a set of measured 

load time series based on similarity to these SLPs. 

1.3 Classification of measured load profiles 

Especially with commercial customers, a large amount of 

load measurement data is already collected. The private na-

ture of this data, however, requires careful anonymization 

of individual customers before using or publishing. In our 

case, we had access to a large number of commercial “reg-

istering load measurement” (RLM) customers, but no in-

formation of the names or types of business associated with 

them. We decided to classify these profiles based on their 

similarity to known SLP categories, and select those with 

high similarity as “typical” profiles. These can be used as 

more realistic substitutes for SLP profiles in our dataset. 

 

The classification, prediction and synthetic generation of 

consumer load profiles have been the topics of several sci-

entific studies. Many of theses are based on clustering anal-

yses of measured load profiles based on a variety of fea-

tures (e.g. [5]). This approach is especially useful in the 

unbiased finding of actual centroids in a specific set of 

measured data, but has the disadvantage that the specific 

properties of the examined dataset might not be applicable 

for different or generic datasets.  

 

In general, the large number of data points in a yearlong 

load profile and their periodic nature makes the selection 

of relevant features for analysis or comparison challenging. 

Discarding the time domain of the signal and only looking 

at parameters like average and standard deviation can re-

duce the complexity [6]. On the other hand, some ap-

proaches treat every single data point of a time series as 

independent and equivalent features [7], which increases 

the demand on computation power. 

A common solution to reduce complexity is to group days 

of a year by similar weekdays or seasons, and calculating 

the average of these. 

 

Since one of the most important factors for grid overload 

is simultaneity of peaks, we intend to classify profiles in a 

way that focuses strongly on the daily load profile shape, i. 

e. peak timing. This rules out methods that discard tem-

poral information, like comparing total power consump-

tion. For many categories of consumers, it is plausible to 

assume a high degree of scale invariance, so that normal-

ized load profile shape is similar for small and large busi-

nesses, with only smoother and more predictable peaks in 

larger units. We base our analysis on this assumption and 

compared SLP profiles, which are typically used below 

100 MWh annual consumption, with RLM customers who 

usually have higher annual consumption. The RLM dataset 

composition is likely to be dissimilar to the average small-

scale customers for which we want to select profiles. Be-

cause of this, we use SLP-based classification instead of 

clustering for profile selection. 

 

It is often the case that individual peaks in measured pro-

files exhibit similar sizes and shape, but vary in time. Typ-

ical examples for this are dairy farms, which use up to half 

of their energy consumption for milking equipment during 

short periods twice a day [8], which are often slightly 

shifted during the year. Methods calculating differences 

between hourly measurements without regarding the 

neighbouring data often tend to classify slightly shifted 

peak values very dissimilar.  

To tackle this problem, a wide range of comparison meth-

ods have been presented in the literature for the shape-

based clustering and classification of time series (for a re-

view, see [9]). We implemented a two dimensional method 

that reduces data to a week average and uses a relaxed Eu-

clidian geometric distance measurement.  

2 Methods 

2.1 Date adjustments 

As we use data from a variety of sources and years, it is not 

possible to restrict profiles to measurements from a single 

year. Since especially the dates of weekdays and public 

holidays have a strong influence on load profiles, we use 

2016 as reference year for the dataset and adjust data from 

different years by shifting days so that they correspond to 

the nearest weekday. We create data for the leap day or 

public holidays by duplicating the next similar weekday. In 

the weather based generation series, weekdays are not ad-

justed, but we reconstruct missing values for the leap day 

2016 by averaging values formed from the previous and 

subsequent days. 

2.2 Generation time series 

The generation time series for photovoltaics (PV), wind en-

ergy and biomass generated for the SimBench dataset are 

created using the agent-based simulation tool for optimized 

grid expansion planning SIMONA developed by the TU 

Dortmund University [10], [11], further details in [12], 

[13]. This multi-agent simulation (MAS) tool is designed 

as a bottom-up model of an electrical energy system, which 

is freely configurable and takes into account operational 

degrees of freedom, interdependencies of individuals tak-

ing part in the energy system and innovative network re-

sources. A comparison of measured data and time series 

created can be found in [14]. SIMONA includes models for 

PV, wind power and biomass plants. These plant models 

receive real weather data of Germany from the German 

Weather Service (DWD) in 2011 for Wind and 2012 for 

PV time series as input data. We use different geographical 
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locations for plants to include locally varying weather con-

ditions in time series generation. The locations were se-

lected taking into account the geographical location of the 

SimBench HV grid models. The locations selected for the 

wind time series correspond approximately to the locations 

of existing wind farms.  

The general geographical location of the measuring points 

is as follows: 

 North Sea and Baltic Sea 

 North Sea coast, Baltic Sea coast and eastern Ger-

many 

 3 locations around Hannover 

 3 locations around Lübeck 

We also include three time series based on real measure-

ments from 2017 of three hydropower plants.  

 

For 2011, 2012 and 2017 generation data, we adjusted the 

time axis to 2016 as described above. Time series values 

are given as relative active power values, which can be ap-

plied by scaling to different plant sizes through multiplica-

tion by the installed power of the plants from the SimBench 

data set. For the PV time series it has to be taken into ac-

count that in some cases the rated power of the asset is not 

reached due to the volatility of the weather. 

 

2.3 Load profiles 

Commercial load profiles are based on a dataset of anony-

mized commercial RLM profiles from the year 2016  pro-

vided by the German distribution grid operator Syna 

GmbH. Household profiles are based on the IZES 2010 da-

taset of smart meter measurements [15]. 

Single commercial load profiles with data inconsistencies 

like missing values are discarded (~10%). Out of the re-

maining 2539 profiles, 622 (~25%) show an annual con-

sumption below 100 MWh, above which individual meter-

ing is required in Germany. Some of the profiles show a 

high amount of reactive power, sometimes exceeding ac-

tive power. While different consumers might differ in their 

power factors (cos φ) due to differences in electrical appli-

ances, we decide to treat profiles with power factor values 

lower than 0.8 as unusual enough to remove these (~14%) 

from the dataset. From this test dataset we select repre-

sentative profiles by matching them to SLPs. Used for 

comparison are the BDEW profiles for the state of Hessen 

provided for 2016 on the website of the distribution grid 

operator EnergieNetz Mitte [16]. 

 

2.4 Matching profiles to SLPs 

Test profiles are reduced to a seven-day-week profile by 

averaging similar days (Fig. 1). Even though SLPs use a 

simpler form of five similar weekdays followed by a Sat-

urday and Sunday, we decided against this form because 

this leads to a disproportional high influence of Saturdays 

and Sundays on matching results. In addition, we wanted 

to account for the fact that Fridays and Mondays often 

show a pronounced difference from other weekdays in 

many measurements. The resulting week profiles are nor-

malized to the maximum used power. 

 

In the resulting weekly profiles of 672 data points each, for 

every point in the test profile the Euclidean distance to the  

nearest point in the reference profile is determined, and 

vice versa. For scale, load and time factors are chosen so 

that 100% maximum load difference corresponds to 24h 

time difference. 

 
𝑑TEST,REF

= ∑ min
𝑛{1,…672}

√(𝑡𝑚
TEST − 𝑡𝑛

REF)
2

+ (𝑒𝑚
TEST − 𝑒𝑛

TEST)
2

672

𝑚=1

 

 

𝑑REF,TEST

= ∑ min
𝑛{1,…672}

√(𝑡𝑚
REF − 𝑡𝑛

TEST)
2

+ (𝑒𝑚
REF − 𝑒𝑛

TEST)
2

672

𝑚=1

 

 

with d=distance measure, t=time value and e=load value. 

The sum of both values gives the overall distance measure-

ment. 

𝑑 = 𝑑TEST,REF +  𝑑REF,TEST 
 

We compared all test profiles to all reference profiles in 

this manner. A test profile was chosen as potentially repre-

sentative for a given SLP when: 

d was lowest from all test profiles in the dataset, and d was 

lowest from all SLP profiles the test profile was compared 

with, the latter taking prevalence over the former. 

 

In MV grids, the composition of directly connected loads 

is expected to differ from those connected to LV grids, but 

there is no universal threshold of consumption that war-

rants a direct connection to the MV grid. In our commercial 

load dataset, most consumers used about 150 MWh/a, with 

single datasets using up to 20 GWh/a. In comparison, the 

Fig.1: Example comparison of a random week (Apr. 04 

- Apr.10 2016) for the reference profile G1 (grey), RLM 

profile G1-A average over all week days (green) and 

RLM profile G1-A for this individual week (blue). 

Traces are normalised to yearly maximum amplitude.  
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average German power consumption for non-industrial 

consumers was only between 1-3 MWh in 2010 [17]. 

We used 0-150 MWh/a, 400-800 MWh/a and above 3.5 

GWh/a as classes for low, medium and high consumption, 

and matched and selected profiles from them individually 

to offer a broader range of profiles for MV (or HV) con-

sumers. 

2.5 Storage profiles 

Based on input from distribution grid operators, we identi-

fied two relevant storage categories: 

Residential PV-battery-systems represent a system with 

least possible grid interaction that runs on an internal oper-

ating schedule in order to maximise household self-con-

sumption. Inputs are SimBench household loads (H0-A to 

H0-L) combined with PV profiles (PV1 to PV8, respec-

tively) and battery storages. In our model, battery and PV 

size are proportional to total household power consump-

tion. The resulting time series combine power production 

and demand into a prosumer series.  

PV and wind profiles with added storage capacities at MV 

level could be a future option for grid support use: Produc-

tion peaks shaved by storing power in battery systems to 

prevent grid overload. In Germany, grid operators are 

given a novel planning opportunity called ‘peak shaving’ 

that allows to consider an annual curtailment of maximum 

3 % per generating unit during the planning process [18], 

[19]. We used this to create modified PV and wind gener-

ation profiles with a peak-shaving regime that stores the 

highest 3% of produced power and releases it in times of 

high demand.  

2.6 Heat pump profiles 

We model a controller based heating system with two ther-

mal storages for domestic hot water and space heating sup-

plied from a heat pump and a peak load heater. The algo-

rithm sets the priority of the domestic hot water above the 

space heating storage, i.e. if both storages are empty, the 

domestic hot water demand is covered first. Both upper and 

lower limit can be set. As soon as one storage state of 

charge drops below the lower limit, the storage is refilled 

until the upper limit is reached. If none of the storages re-

quires a refill, the heating system is turned off.  

 

We model three different heat pump operation modes. The 

most common modes are bivalent-alternative, bivalent-

parallel and bivalent-semi-parallel [20]. Common for all 

modes is the bivalent temperature, i.e. the ambient temper-

ature at which the peak load heater can be activated. In case 

of the alternative operation mode, the heat pump turns off 

at a certain temperature and only the peak load heater co-

vers the heat demand, while in case of the parallel opera-

tion mode both systems run simultaneously. The semi-par-

allel mode combines both options. 

Heat pumps also differ in their external heat source, with a 

current and predicted future use of both geo-thermal and 

air heat pumps [21], so we included both types.  

 

Operation time of a heat pump is strongly dependent on the 

heat demand in a household and therefore to the time series 

of ambient temperature. We selected the central region 

used for PV and wind data (Kassel) as a location for ambi-

ent temperature profiles and heat demand profiles for a sin-

gle family house.  

We also include a daily time period when heat pumps are 

usually blocked by the grid operator based on profiles pro-

vided by EAM (11:00 to 12:45)[16]. 

2.7 Electric vehicle charging profiles 

We created electric vehicle charging profiles based on a 

probabilistic combination of four data sets to calculate 

travel and charging times of single cars. Typical mobility 

behaviour parameters of German citizens are based on data 

from the “Mobility in Germany” survey [22]. We deleted 

implausible data like average velocities above 120 km/h. 

Car types are based on official sales statistics for Germany 

from 2013 to 2017 (Federal Motor Transport Authority, 

cited after [23]), and their individual data sheets provide 

data for battery types. Typical electrical car charging 

schedules based on measurements at the Fraunhofer IEE 

[24] were scaled accordingly assuming different applied 

power and capacities. 

 

Exemplary profile for single charging processes are se-

lected based on typical car distribution. Car types without 

available charging profiles (~35%) are randomly assigned 

to known types.  

Battery capacities as well as power consumptions per 

100 km travel distance are independently based on the typ-

ical existing distribution for electric cars, leading to a broad 

variety of combinations. 

The initial battery state of charge (SOC) is set randomly to 

between 50 and 100 %  

The number of potential trips and therefore charging occa-

sions per weekday are determined from behaviour param-

eters and grouped into five trip categories: Workplace, 

home, into the city and out of the city. 

Weekday and trip category determine the probability dis-

tribution of the time of arrival, velocity and distance. These 

factors are calculated for each charging occasion. 

Since not all trips need to be followed by a charging pro-

cess, we model the users charging decisions based on in-

tervals between trips. If the car stands longer than three 

hours the probability to charge is 60 %. If a car stands less 

than three hours, the probability is reduced to 20%. If SOC 

falls below 20 %, the electrical car is always charged at the 

end of the trip regardless of time. 

 

These car based time series are the basis for modelling the 

point of intercept between the electrical grid and the elec-

trical vehicle at the charging stations. Forecasts for 2024 

and 2034 predict that most charging stations have a power 

consumption of 3.7, 11.0, 22.0 and 50.0 kW, with smaller 

stations more common especially in residential environ-

ments. The profiles for the dataset contain household and 

workplace charging profiles for different charging station 
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powers, with charging types and car types taken from in-

dependent samples. Time series are calculated for the year 

2016. 

3 Results 

3.1 Load profile matching 

For all commercial profile classes (Type G1-G6), we could 

find matching week profiles from our RLM dataset. Low-

est distances are found in profiles matched to SLP catego-

ries with relatively homogeneous loads like G3, G4 or L2, 

while profiles with accentuated peaks at certain day hours 

like L1 or G2 were less similar. G1, which represents a 

common business type with 8:00-18:00 working hours was 

also matched most often (Fig. 2). This profile is tradition-

ally used for office buildings and stores, which make up 

the biggest faction in German non-industrial businesses. 

[17].  

For medium and high consumption profiles, G1 was less 

often matched, and profiles with high baseline load ap-

peared more often (data not shown). For high consumption 

customers, we included one profile (H0-H) that was 

matched to H0 due to a uniform load on all weekdays com-

bined with a high base load. Several profiles in the dataset 

did not match standard SLPs but exhibited band load char-

acteristics, either for the whole week or for working days 

only. One example of these profiles each was included as 

“BL-H” and “WB-H” in the profile set. 

 

In the household dataset, the only commercial profile 

matched was G6, which represents weekend usage. In ad-

dition, the agricultural profiles L0-L2 were often matched. 

Since these profiles represent a high demand in the early 

morning, evening and weekend hours, their similarity to 

many household profiles is plausible. 

 

When examined on a 15-minute-basis instead of weekly 

averages, even profiles with a low distance exhibit strong 

differences to their matched SLPs. Both short peaks and 

day-specific variations are much more pronounced (Fig. 

1). This effect is more visible in the H and L type profiles, 

which show a higher overall variation in peak timing. 

3.2 Composition of the SimBench dataset 

The dataset (Fig. 3) contains eight time series each for PV 

(PV-), elven for wind (WK-) and five for biomass (BM-) 

generation as well as three time series for hydroelectric 

generation (H-). Of the 15 storage series included, ten (PB-

1 to WB-5 and WB-1 to WB-5) are based on peak-shaved 

generation series, and five series (PB-A to -L) are house-

hold-based prosumer series. These time series and the five 

heat pump series (WP-1 to WP-5) are not divided into high, 

medium and low classes. 

 

Of the five heat pump profiles, two (WP-1 and -2) are geo-

thermal heat pumps and three (WP-3 to -5) are air heat 

pumps. WP-1 and -3 are operated parallel, WP-2 and -4 are 

operated in alternative mode and WP-5 is operated in semi-

parallel mode. 

 

Five electrical car charging series each are provided for 

household (E#-HA to –HC) and workspace charging. (E#-

GA and –GB) These profiles vary by max charging power 

available at the station (#), and model 3.7, 11.0, 22.0 and 

50.0 kV chargers. 

 

The consumer profiles consist of five household based time 

series (H0-A to H0-L) and 22 RLM based series. The latter 

are sorted by matching SLP type (G0- to L2-), with last 

letters –A to C indicating low consumption, -M medium 

consumption, and -H high consumption customers. In ad-

dition, a fulltime band load (BL-H) and weekday band load 

dominated (BW-H) profiles are included. 
Fig. 2: Distribution of profiles (high, medium and low 

consumption commercial and household) after match-

ing to SLPs. The profiles with lowest distances are se-

lected for the datasets. 

Fig.3: Profiles selected for the SimBench LV and MV da-

taset. Hatched boxes represent household type customers, 

while full boxes represent commercial type customers. 
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Timestamps for data are in CET (UTC+1) including Ger-

man state holidays. All active power values are normalized 

to the maximum active power value. Since every grid node 

in SimBench grids comes with fixed scaling factors for ac-

tive and reactive power, time series reactive power values 

are scaled up to meet the original load factor when multi-

plied with these factors. 

 

With its input from variable sources, this dataset aims to 

provide the user with a high variety of time series, while 

keeping the number of individual profiles to download and 

manage at a practical level. The modular and interchange-

able format of the data also allows add individually meas-

ured data or new profile classes in the future.  

The SimBench grids and time series can be downloaded at 

www.simbench.de 
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